• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Smoking Habit Affects Response to False Feedback

Smoking Habit Affects Response to False Feedback

© iStock

A team of scientists at HSE University, in collaboration with the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, studied how people respond to deception when under stress and cognitive load. The study revealed that smoking habits interfere with performance on cognitive tasks involving memory and attention and impairs a person’s ability to detect deception. The study findings have been published in Frontiers in Neuroscience.

In today’s world of information overload, one must remain vigilant and quickly adapt to changing circumstances to avoid deception or falling into the trap of fake information. Understanding individuals' ability to cope with stress and detect deception in challenging situations, alongside the related response of their body and brain, has become an important scientific objective today. 

A group of researchers at HSE University and the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences analysed people's responses to stress induced by cognitive engagement and examined their ability to detect deception attempts.

Seventy people participated in the experiment, completing memory and attention tasks of increasing complexity. Participants were instructed to view images of coloured balloons and compare each with the preceding one to identify colour matches. As the difficulty level increased, participants had to memorise more balloons and colours. Immediate feedback was provided after each response. Midway through the experiment, participants were given deceptive feedback, such as being told they made a mistake when their answer was actually correct. 

Throughout the experiment, the researchers recorded participants' physiological responses and pupil dilation. Pupils respond to changes in the sympathetic ('fight or flight') and parasympathetic (relaxation) systems and are directly linked to cognitive processes; during cognitive stress, pupils dilate. Machine learning algorithms were used to classify participants into two clusters based on how their pupils reacted to increasingly complex tasks. 

Fig. 1. In Cluster 0, which included more smokers and individuals prone to excessive daytime sleepiness, the reaction to the increasing load across three blocks was as follows: initially, the pupils were larger but then failed to respond to further cognitive load and deception. In Cluster 1, which consisted of fewer smokers and fewer individuals prone to excessive daytime sleepiness, their pupils were initially smaller but dilated in response to increasing cognitive load and reacted to deceptive feedback (highlighted in orange).
© Alshanskaia E, Portnova G, Liaukovich K, Martynova OV (2024) Pupillometry and autonomic nervous system responses to cognitive load and false feedback: an unsupervised machine learning approach. Front. Neuroscience. 18:1445697. doi: 10.3389/fnins.2024.1445697

Next, the authors used machine learning to analyse a variety of physiological and behavioural parameters to identify differences between the two clusters of participants. The analysis considered individual data on health, the presence of chronic conditions, lifestyle factors, harmful habits (including smoking), and tendencies toward depression and anxiety disorders. During task performance, participants had their heart rate, skin conductance, and breathing monitored as polygraph parameters. In addition, the analysis included the speed of task completion, the number of errors made, and participants' self-esteem levels after completing the experiment.

Evgeniia Alshanskaia

'We were the first to employ dynamic pupillometry, which measures pupil dilation, to simultaneously analyse a wide range of physiological and neurological parameters, along with psychological factors. Changes in pupil size directly indicate how a person adapts to a stressful situation, revealing when they are relaxed and when they are mobilised. Thanks to advanced technology, we were able to process the entire dataset and identify patterns that would have been impossible to detect manually,' according to Evgeniia Alshanskaia, co-author of the study and Junior Research Fellow at the Institute for Cognitive Neuroscience. 

The researchers obtained interesting results: in one of the clusters, participants exhibited a less pronounced response to stress, along with differing heart rate parameters and oculomotor behaviour, compared to the other cluster. At the same time, the former cluster answered the questions more quickly but made more mistakes, resulting in a lower self-assessment of their performance. This cluster included a higher number of smokers and individuals prone to excessive daytime sleepiness. These two parameters were found to differ significantly between the two clusters of participants. The researchers attribute the differences to the effects of nicotine on the body. 

Fig. 2. Comparative analysis of heart rate variability, eye movements, and behavioural responses between the two clusters of participants. Statistical significance between clusters is marked by an asterisk (*).
© Alshanskaia E, Portnova G, Liaukovich K, Martynova OV (2024) Pupillometry and autonomic nervous system responses to cognitive load and false feedback: an unsupervised machine learning approach. Front. Neuroscience. 18:1445697. doi: 10.3389/fnins.2024.1445697

'Nicotine affects acetylcholine receptors throughout the body and the brain. Acetylcholine is the first neurotransmitter ever discovered. It helps control muscle movement, regulates heartbeat and breathing, and modulates  pupil response, while also playing a crucial role in cognitive processes. It affects how we respond to and process information. When a person smokes, nicotine “tricks” these receptors into functioning improperly. On one hand, nicotine induces a relaxed state; on the other hand, it alters the connection between the brain and the body, making it more difficult to respond appropriately to stressful situations. Attention does not require relaxation and calmness; instead, it relies on optimal levels of stress and alertness,' explains Alshanskaia. 

According to the authors, daytime sleepiness may also be linked to the exposure of nicotinic acetylcholine receptors to nicotine. These receptors regulate the activation and inhibition of neurons, modulate dopamine release, and influence the functions of the dorsolateral prefrontal cortex, which is responsible for planning and executive functions. 'Acetylcholine and its receptors represent one of the most significant areas of contemporary neurobiological research,' the authors emphasise.

The study's findings further highlight the serious impact of smoking on human health. These findings are also important for developing individualised strategies to enhance cognitive resilience under conditions of stress and information overload. Additionally, they can be valuable for educational purposes and learning tasks, as they contribute to a better understanding of the optimal levels of stress and cognitive load necessary for successful learning, performance, and resilience in an unpredictable world. 

See also:

Cerium Glows Yellow: Chemists Discover How to Control Luminescence of Rare Earth Elements

Researchers at HSE University and the Institute of Petrochemical Synthesis of the Russian Academy of Sciences have discovered a way to control both the colour and brightness of the glow emitted by rare earth elements. Their luminescence is generally predictable—for example, cerium typically emits light in the ultraviolet range. However, the scientists have demonstrated that this can be altered. They created a chemical environment in which a cerium ion began to emit a yellow glow. The findings could contribute to the development of new light sources, displays, and lasers. The study has been published in Optical Materials.

Genetic Prediction of Cancer Recurrence: Scientists Verify Reliability of Computer Models

In biomedical research, machine learning algorithms are often used to analyse data—for instance, to predict cancer recurrence. However, it is not always clear whether these algorithms are detecting meaningful patterns or merely fitting random noise in the data. Scientists from HSE University, IBCh RAS, and Moscow State University have developed a test that makes it possible to determine this distinction. It could become an important tool for verifying the reliability of algorithms in medicine and biology. The study has been published on arXiv.

Habits Stem from Childhood: School Years Found to Shape Leisure Preferences in Adulthood

Moving to a big city does not necessarily lead to dramatic changes in daily habits. A study conducted at HSE University found that leisure preferences in adulthood are largely shaped during childhood and are influenced by where individuals spent their school years. This conclusion was drawn by Sergey Korotaev, Research Fellow at the HSE Faculty of Economic Sciences, from analysing the leisure habits of more than 5,000 Russians.

Russian Scientists Reconstruct Dynamics of Brain Neuron Model Using Neural Network

Researchers from HSE University in Nizhny Novgorod have shown that a neural network can reconstruct the dynamics of a brain neuron model using just a single set of measurements, such as recordings of its electrical activity. The developed neural network was trained to reconstruct the system's full dynamics and predict its behaviour under changing conditions. This method enables the investigation of complex biological processes, even when not all necessary measurements are available. The study has been published in Chaos, Solitons & Fractals.

Researchers Uncover Specific Aspects of Story Comprehension in Young Children

For the first time, psycholinguists from the HSE Centre for Language and Brain, in collaboration with colleagues from the USA and Germany, recorded eye movements during a test to assess narrative skills in young children and adults. The researchers found that story comprehension depends on plot structure, and that children aged five to six tend to struggle with questions about protagonists' internal states. The study findings have been published in the Journal of Experimental Child Psychology.

Scientists Propose Novel Theory on Origin of Genetic Code

Alan Herbert, Scientific Supervisor of the HSE International Laboratory of Bioinformatics, has put forward a new explanation for one of biology's enduring mysteries—the origin of the genetic code. According to his publication in Biology Letters, the contemporary genetic code may have originated from self-organising molecular complexes known as ‘tinkers.’ The author presents this novel hypothesis based on an analysis of secondary DNA structures using the AlphaFold 3 neural network.

See, Feel, and Understand: HSE Researchers to Explore Mechanisms of Movement Perception in Autism

Scientists at the HSE Cognitive Health and Intelligence Centre have won a grant from the Russian Science Foundation (RSF) to investigate the mechanisms of visual motion perception in autism. The researchers will design an experimental paradigm to explore the relationship between visual attention and motor skills in individuals with autism spectrum disorders. This will provide insight into the neurocognitive mechanisms underlying social interaction difficulties in autism and help identify strategies for compensating for them.

Scholars Disprove Existence of ‘Crisis of Trust’ in Science

An international team of researchers, including specialists from HSE University, has conducted a large-scale survey in 68 countries on the subject of trust in science. In most countries, people continue to highly value the work of scientists and want to see them take a more active role in public life. The results have been published in Nature Human Behaviour.

Education System Reforms Led to Better University Performance, HSE Researchers Find

A study by researchers at the HSE Faculty of Economic Sciences and the Institute of Education have found that the number of academic papers published by research universities in international journals has tripled in the past eight years. Additionally, universities have developed more distinct specialisations. Thus, sectoral universities specialising in medical, pedagogical, technical, and other fields are twice as likely to admit students to target places. The study has been published in Vocation, Technology & Education.

Scientists Record GRB 221009A, the Brightest Gamma-Ray Burst in Cosmic History

A team of scientists from 17 countries, including physicists from HSE University, analysed early photometric and spectroscopic data of GRB 221009A, the brightest gamma-ray burst ever recorded. The data was obtained at the Sayan Observatory one hour and 15 minutes after the emission was registered. The researchers detected photons with an energy of 18 teraelectronvolts (TeV). Theoretically, such high-energy particles should not reach Earth, but data analysis has confirmed that they can. The results challenge the theory of gamma radiation absorption and may point to unknown physical processes. The study has been published in Astronomy & Astrophysics.