Larger Groups of Students Use AI More Effectively in Learning

Researchers at the Institute of Education and the Faculty of Economic Sciences at HSE University have studied what factors determine the success of student group projects when they are completed with the help of artificial intelligence (AI). Their findings suggest that, in addition to the knowledge level of the team members, the size of the group also plays a significant role—the larger it is, the more efficient the process becomes. The study was published in Innovations in Education and Teaching International.
Group projects are an essential and common part of higher education, but there is still uncertainty about what makes teamwork effective.
The situation has become more interesting since the emergence of AI, which students have started to actively use in their studies. Experts from HSE University, including Galina Shulgina, Aleksandra Getman, Ilya Gulenkov, and Jamie Costley, explored how the characteristics of groups—the size and level of participants’ knowledge—affect the outcomes of work when AI is involved.
The study included 196 second-year undergraduate students, 55% of whom were male and 45% female. They had to solve problems as part of a team in a 16-week macroeconomics course. The students were divided into groups of five to eight people with varying levels of knowledge and experience. At first, the students worked independently on tasks. Then, they attended four seminars where they used ChatGPT 3.5 as a group tool. The goal was not simply to receive an answer from the AI, but to critically analyse it, apply economic models from the course, and present a comprehensive solution.
Researchers evaluated the quality of solutions based on the accuracy and detail of students' responses. Teams that not only used AI correctly but also revealed its limitations earned the highest scores, demonstrating a deeper understanding of the material.
The scientists identified several patterns in the use of AI by groups. Firstly, the best results were achieved by teams with members of similar levels of expertise. However, teams with a wider range of knowledge often performed less effectively. This is despite the fact that, in pedagogy, it is often believed that diversity of knowledge can help rather than hinder a team's performance.
Galina Shulgina
‘We were surprised to discover that the wider the range of student grades, the lower the quality of the final decision. This may be because the more prepared students spent time discussing and reaching an agreement on a solution, rather than focusing on the task itself, while less prepared students were unable to fully utilise the AI capabilities available to them. More skilled students are better at interacting with AI, as they can formulate more complex queries, critically evaluate the responses, and use this information to reason through problems,’ explains Galina Shulgina, junior researcher at the International Laboratory of Research and Design in eLearning at HSE University.
Secondly, the data showed a clear positive correlation between a larger team size and better performance when working with AI. Larger teams, with seven to eight members, performed better on average compared to teams with five to six members. Each additional member contributed to the final score, contrary to the common belief in pedagogy that smaller teams are more effective. Scientists argue that larger teams have more intellectual resources and a variety of perspectives, which help them interact more productively with neural networks.
Aleksandra Getman
‘However, this does not mean that efficiency gains will continue infinitely. After a certain point, negative effects may start to appear, such as difficulty in coordination and increased time to coordinate and maintain shared understanding of the task,’ explains Aleksandra Getman, junior researcher at the International Laboratory of Research and Design in eLearning at HSE University.
Despite the need for further research, the authors believe that in order to optimise the use of AI in education, students with similar educational levels should be grouped together in large classes. The researchers suggest that AI could be applied to the study of any subject.
Ilya Gulenkov
‘There is a potential for incorporating AI into group work in any course, regardless of the field of study or level of training. The key task of the teacher in organising such work is to set students’ expectations in advance about how and why AI can be used in their coursework. If students see examples of successful application of AI, then it can become an additional team member in any subject. We observe how students are using more advanced versions of the models (ChatGPT 5, ChatGPT 5 Thinking, etc), and we see great potential for student–AI collaboration. This applies not only to simple, standardised tasks, but also to complex ones that require in-depth understanding, working with multiple sources, and advanced reasoning. The role of students' own expertise in interacting with these models is becoming increasingly important. All models now provide plausible answers, but it is essential to critically evaluate their content,’ says Ilya Gulenkov, lecturer at HSE University’s Faculty of Economic Sciences.
See also:
New Models for Studying Diseases: From Petri Dishes to Organs-on-a-Chip
Biologists from HSE University, in collaboration with researchers from the Kulakov National Medical Research Centre for Obstetrics, Gynecology, and Perinatology, have used advanced microfluidic technologies to study preeclampsia—one of the most dangerous pregnancy complications, posing serious risks to the life and health of both mother and child. In a paper published in BioChip Journal, the researchers review modern cellular models—including advanced placenta-on-a-chip technologies—that offer deeper insights into the mechanisms of the disorder and support the development of effective treatments.
Using Two Cryptocurrencies Enhances Volatility Forecasting
Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.
Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions
An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.
Advancing Personalised Therapy for More Effective Cancer Treatment
Researchers from the International Laboratory of Microphysiological Systems at HSE University's Faculty of Biology and Biotechnology are developing methods to reduce tumour cell resistance to drugs and to create more effective, personalised cancer treatments. In this interview with the HSE News Service, Diana Maltseva, Head of the Laboratory, talks about their work.
Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence
Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.
Solvent Instead of Toxic Reagents: Chemists Develop Environmentally Friendly Method for Synthesising Aniline Derivatives
An international team of researchers, including chemists from HSE University and the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), has developed a new method for synthesising aniline derivatives—compounds widely used in the production of medicines, dyes, and electronic materials. Instead of relying on toxic and expensive reagents, they proposed using tetrahydrofuran, which can be derived from renewable raw materials. The reaction was carried out in the presence of readily available cobalt salts and syngas. This approach reduces hazardous waste and simplifies the production process, making it more environmentally friendly. The study has been published in ChemSusChem.
‘Our Task Is to Promote and Popularise Native Languages’
The Centre for the Study of Native Languages at Dagestan State University (DSU) is actively engaged in researching the many languages spoken by the peoples of Dagestan. The republic has 14 official state languages, many of which have their own dialects and varieties. Scholars from Dagestan plan to adopt corpus-based methods of linguistic research used at HSE University and intend to collaborate with HSE’s Linguistic Convergence Laboratory. The HSE News Service spoke with the centre’s Director, Prof. Marina Gasanova, who is currently undertaking a research placement at HSE University.
How Colour Affects Pricing: Why Art Collectors Pay More for Blue
Economists from HSE University, St Petersburg State University, and the University of Florida have found which colours in abstract paintings increase their market value. An analysis of thousands of canvases sold at auctions revealed that buyers place a higher value on blue and favour bright, saturated palettes, while showing less appreciation for traditional colour schemes. The article has been published in Information Systems Frontiers.
New Method for Describing Graphene Simplifies Analysis of Nanomaterials
An international team, including scientists from HSE University, has proposed a new mathematical method to analyse the structure of graphene. The scientists demonstrated that the characteristics of a graphene lattice can be represented using a three-step random walk model of a particle. This approach allows the lattice to be described more quickly and without cumbersome calculations. The study has been published in Journal of Physics A: Mathematical and Theoretical.
HSE Researchers Assess Creative Industry Losses from Use of GenAI
Speaking at the IPQuorum.Music forum on October 15, Leonid Gokhberg, HSE First Vice Rector, and Daniil Kudrin, an expert at the Centre for Industry and Corporate Projects of HSE ISSEK, presented the findings of the first study in Russia on the economic impact of GenAI on creative professions. The analysis shows that creators’ potential losses could reach one trillion roubles by 2030.


