• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Researchers Expand the Capabilities of Magnetoencephalography

Researchers Expand the Capabilities of Magnetoencephalography

© iStock

Researchers from the HSE Institute for Cognitive Neuroscience have proposed a new method to process magnetoencephalography (MEG) data, which helps find cortical activation areas with higher precision. The method can be used in both basic research and clinical practice to diagnose a wide range of neurological disorders and to prepare patients for brain surgery. The paper describing the algorithm was published in the journal NeuroImage.

Magnetoencephalography (MEG) is a method based on measuring very weak magnetic fields (several orders of magnitude weaker than the Earth’s magnetic field) induced by the brain's electrical activity. When using MEG, researchers face the complicated task of understanding which areas inside the brain were active when they only have the measurements of sensors placed around the head. This problem is called an ‘inverse problem’ and fundamentally has no universal solution: any set of measurements can be explained by an endless number of different configurations of neural activity sources on the cortex.

To make application of MEG practical, special mathematical methods are used to turn sensor signals into cortical activity maps. These methods can be categorized into two groups. As part of the so-called ‘global’ approach, the multitude of possible solutions for the inverse problem is narrowed down based on the generalized a priori assumptions on brain activity. Under these constraints researchers look for a distribution of sources in the cortex that would explain the measured data. The ‘local’ methods, including the algorithm described in the paper (ReciPSIICOS), aim to find separate sources, and only after that, to create a complete image of brain activity.

ReciPSIICOS uses adaptive beamformers (BF) – a method to process sensor measurements that allows detection of an activity signal of a target neuronal population. For this purpose, it attempts to mute the signals from other sources, but not from all of them as is done in the ‘global’ approach, but instead only the ones that are active at the moment.

When suppressing only active signals, this approach is able to provide a considerably higher fidelity in activity visualization as compared to the ‘global’ approach. However, this method can also suppress the target signals begotten by neuronal ensembles activated simultaneously with neuronal populations in other brain areas. In real-life conditions, such correlation reflects the interaction between neuronal populations, which is an inherent property of the brain, and researchers have to look for methods to overcome this obstacle.

Information on active neuronal populations and the nature of their interaction is encoded in a special covariance matrix, which can be calculated based on the sensor data. This matrix is used by the beamforming algorithm to decide which of the sources should be suppressed. Strictly speaking, this approach is applicable only when sources do not interact: information on such interaction is also contained in the correlation matrix and negatively impacts beamforming algorithm performance. Using the observed data model and the correlation matrix model, the researchers developed a mathematical algorithm that is able to erase the information on sources’ interaction from the correlation matrix. This way they extended the range of applicability of  the beamforming method to the environment with synchronous neuronal sources  and provided the necessary precision in the visualization of interacting neuronal populations.

Alexey Ossadtchi,
Ph.D., Director of the HSE Centre for Bioelectric Interfaces, the author of the new methods

Magnetoencephalography technology combines the ability to register precise aspects of the temporal evolution  in neuronal activity and a potentially high fidelity of localizing the active neuronal populations. The first feature comes from registration of electrical activity that is changing significantly faster  than the hemodynamic responses exploited by fMRI, a popular functional brain imaging modality.  To achieve a high precision in spatial localization complicated mathematical methods are needed. The family of ReciPSIICOS and PSIICOS methods is an example of mathematical algorithms aimed at increasing the spatial resolution of MEG modality detect active and interacting neuronal populations.

To evaluate the algorithm performance, the researchers first generated a dataset that mimics the signals received by the sensors in real-life and tested four methods on it: two types of ReciPSIICOS and two previously developed algorithms (linearly constrained minimum variance (LCMV) beamformers, and Minimum-Norm Estimates (MNE) approach). In situations when there is no correlation between signals, LCMV and both ReciPSIICOS methods work well, but when there is a correlation, ReciPSIICOS handles the task much better than its predecessors. Under the stress test for the forward modelling accuracy  the results are similar: ReciPSIICOS proved to be less sensitive to inaccuracy of the models used, which are inevitable in practice. The scholars also demonstrated operability and high performance characteristics of the new approach on several real MEG datasets characterized by the presence of synchronous neuronal sources that could not be adequately processed by the classical beamforming algorithm.

See also:

Processing Temporal Information Requires Brain Activation

HSE scientists used magnetoencephalography and magnetic resonance imaging to study how people store and process temporal and spatial information in their working memory. The experiment has demonstrated that dealing with temporal information is more challenging for the brain than handling spatial information. The brain expends more resources when processing temporal data and needs to employ additional coding using 'spatial' cues. The paper has been published in the Journal of Cognitive Neuroscience.

Neuroscientists Inflict 'Damage' on Computational Model of Human Brain

An international team of researchers, including neuroscientists at HSE University, has developed a computational model for simulating semantic dementia, a severe neurodegenerative condition that progressively deprives patients of their ability to comprehend the meaning of words. The neural network model represents processes occurring in the brain regions critical for language function. The results indicate that initially, the patient's brain forgets the meanings of object-related words, followed by action-related words. Additionally, the degradation of white matter tends to produce more severe language impairments than the decay of grey matter. The study findings have been published in Scientific Reports.

New Method Enables Dyslexia Detection within Minutes

HSE scientists have developed a novel method for detecting dyslexia in primary school students. It relies on a combination of machine learning algorithms, technology for recording eye movements during reading, and demographic data. The new method enables more accurate and faster detection of reading disorders, even at early stages, compared to traditional diagnostic assessments. The results have been published in PLOS ONE.

HSE University and Adyghe State University Launch Digital Ethnolook International Contest

The HSE Centre for Language and Brain and the Laboratory of Experimental Linguistics at Adyghe State University (ASU) have launched the first Digital Ethnolook International Contest in the Brain Art / ScienceArt / EtnoArt format. Submissions are accepted until May 25, 2024.

Parietal Cortex Influences Risk-Taking Behaviour

Making decisions in situations involving risk and uncertainty is an inherent aspect of our daily lives. Should I obtain luggage insurance for my flight, cross the road when the light is red, or leave my current job for a new opportunity? Researchers at the HSE Institute for Cognitive Neuroscience conducted an experiment to clarify the role the parietal cortex plays in decision-making in the context of risk. They found that suppression of activity in the parietal cortex resulted in subjects being less inclined to take risks. A paper with the study findings has been published in Cerebral Cortex.

Cognitive Reappraisal of Negative Emotions Can Help Manage Stress

Researchers at the HSE International Laboratory of Social Neurobiology assessed the effectiveness of two strategies for regulating emotions: reappraisal and suppression. Having analysed data on the electrical activity of 60 individuals’ brains, the scientists discovered that both approaches put additional strain on the nervous system. It was also found that individuals who are prone to emotional contagion tend to be more effective in using reappraisal and managing negative emotions. The paper has been published in Experimental Brain Research.

Russian Researchers Unveil Mechanism Underlying Language Processing Disruptions in Epilepsy Patients

Researchers at HSE University and the Pirogov National Medical and Surgical Centre have examined alterations induced by epilepsy in the language-related neural network within the brain. Using graph-based analysis, the researchers studied fMRI data from 28 patients and found that in epilepsy, both hemispheres of the brain become activated during language processing and short connections form between the hemispheres, while long connections within one hemisphere are disrupted. The study has been published in Epilepsy&Behavior.

HSE Creates ‘Transfer of Neurocognitive Technologies’ Consortium

HSE, the Pirogov National Medical and Surgical Centre, and the Centre for Speech Pathology and Neurorehabilitation of the Moscow Healthcare Department have signed an agreement on cooperation and the creation of a ‘neuro-consortium’ under the name ‘Transfer of Neurocognitive Technologies’. The new body will boost the development and implementation of advanced solutions in neurotechnology aimed at maintaining and improving people's health. The agreement was signed for five years, and the consortium is open to new participants.

'While it May Sound Futuristic, It Holds Great Promise': Olga Dragoy Shares Her Thoughts on Language Function Restoration and the Future of Neurotechnology

In the spring of 2023, the fifth strategic project of the Priority 2030 programme, 'Human Brain Resilience: Neurocognitive Technologies for Adaptation, Learning, Development and Rehabilitation in a Changing Environment,' was launched at HSE University. The strategic project brings together researchers from all campuses of HSE University. In her interview with the HSE News Service, Olga Dragoy, head of the strategic project and Director of the HSE Centre for Language and Brain, shares an overview of the advanced technologies neuroscientists are creating today, the underlying inspiration driving these efforts, and the operational dynamics of interdisciplinary applied projects.

‘It Was Great to Look at Scientific Achievements through the Eyes of a Journalist, not a Scientist’

HSE University in Nizhny recently hosted the 2nd Autumn Neuro-linguistic School ‘NeuroSciCom: Popularising Language and Brain Studies’ for scientists and students at the HSE Centre for Language and Brain Studies in Nizhny Novgorod. The school was held as part of the 'Human Brain Resilience: Neurocognitive Technologies for Adaptation, Learning, Development and Rehabilitation in a Changing Environment' Strategic Project of the Priority 2030 programme.