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1. EXAMPLE OF TEXT COLLECTION: 17685 ABSTRACTS FROM
|7 SPRINGER JOURNALS IN DATA SCIENCE (1998-2017)

1. Pattern Analysis and Applications (V. 1 /1998 — V. 20 /2017)
2. Journal of Classification (V. 15 /1998 — V. 34 /2017)

3. Annals of Mathematics & Artificial Intelligence (23/1998 - 80/2017)
4. Social Network Analysis and Mining (V.1/2011—V.7/2017)

17. Machine Learning (V. 30/1998—V.106/2017)




CHALLENGE

e Given: 17685 abstracts from |7 Springer journals in Data Science (1998-2017)
e Wanted: Provide a brief description of main contents

e | know of 5 ways for doing that using computer:

o 1. Content-analysis

o 2.Summarization

o 3. Co-citation and mutual citation graphs
o 4. Topic modeling

o 5. Taxonomic content-analysis (here)




METHOD

e Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)
e Wanted: Provide a brief description of main contents

e Taxonomic content-analysis — proposed here

o |.Find (build) a taxonomy of the domain (Data science)

O

2.Take the 317 taxonomy leaf concepts as units of the analysis

3. Compute 17685x317 relevance matrix “text-to-leaf_concept”

O

4. Find fuzzy clusters of leaf concepts

(@)

5. Generalize a fuzzy cluster by optimally lifting it in the taxonomy tree
to a head subject

(@)

6. Conceptualize the result

O




TAXONOMY |:DATA SCIENCE ITEMS INACM CCS

Subject index | Subject name

6

1. Theory of computation

[.1. Theory and algorithms for application domains | _
2. Mathematics of computing

2.1. Probability and statistics

3. Information systems

3.1 Data management systems

3.2. Information systems applications
3.3. World Wide Web

3.4 Information retrieval

4 Human-centered computing

4.1. Visualization

3. Computing methodologies

5.1 Artificial intelligence

3.2, Machine learning




DS TAXONOMY LEAF SUBJECTS




DS IN ACM COMPUTING CLASSIFICATION SYSTEM, LOWER RANKS

3.2.1. Data mining

8 3.2.1.1 Data cleaning
3.2.1.2 Collaborative filtering
3.2.1.2.1%# [tem-based
3.2.1.2.2%% Scalable
3.2.1.3.% Association rules
3.2 1.3.1+# Types of association rules
3.2.1.3.2%# Interestingness
3.2.1.3.3%% Parallel computation
3.2.14 Clustering
3.2.1.4.1+# Massive data clustering
3.2.1.4.2%# Consensus clustering
3.2.1.4.3%# Fuzzy clustering
3.2.1.4.4%# Additive clustering
3.2.1.4.5%# Feature weight clustering
3.2.1.4.6%% Conceptual clustering
3.2.1.4.7+%# Biclustering
3.2.1.5. Nearest-neighbor search



DATA SCIENCE TAXONOMY (FROLOV ET AL. 2018)

e Based on Classification of Computing Systems by ACM (456
items; 317 are lowest layer subjects (leaves)

https://www.hse.ru/mirror/pubs/share/213924179

— =]

[9.1.2. Knowledge representation and reasoning
[2.1.2.1. Description logics
[2.1.2.2. Semantic networks
[2.1.2.3. MNonmonotonic, default reasoning and belief revision
[2.1.2.4. Probabilistic reasoning
[2.1.2.5. Vagueness and fuzzy logic
[2.1.2.6. Causal reasoning and diagnostics
[2.1.2.7. Temporal reasoning
[2.1.2.8. Cognitive robotics
[2.1.2.9. Ontology engineering
12.1.2.10. Logic programming and answer set programming
[2.1.2.11. Spatial and physical reasoning
[2.1.2.12. Reasoning about belief and knowledge
2.1.3. Computer vision
I 3.1.3.1. Computer vision problems I



3. Leaf topic — to — text Relevance Matrix:
Annotated Suffix Tree (AST)

AST method (Pampapathi et al. 2006, Mirkin, Chernyak, 2014)
= matrix R = (Rw) 317x17685
Relevance index matrix: taxonomy_leaf topic x text

AST:. away to keep text fragments (suffixes) and their
frequencies




AST INSTANCE
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RELEVANCE INDEX: SUMMARY CONDITIONAL PROBABILITY OF
NEXT SYMBOL IN MAXIMAL ALIGNED FRAGMENTS

Advantages of Annotated Suffix Trees

e No pre-processing (lemmatization, stemming) needed

e Admits random errors in texts




4. FINDING THEMATIC FUZZY CLUSTERS
13

* Convert rectangle topic-to-text relevance matrix R into square topic-
to-topic co-relevance matrix C

* Apply Laplacian normalization B=L(C) to sharpen the cluster
structure in C

* Fuzzy clustering in the space of eigen-vectors of B=L(C) [EigenMap
(Belkin, Niyogi, 2003), FADDIS (Mirkin, Nascimento, 2012)]




CO-RELEVANCE MATRIX 317x317

+ Givéh TV R=(r,,), define VxV C=(c,u} Cppy = Dte1 Fys M/ Ny

* n,= number of leaf subjects v such that r,,> 0.2
(topics relevant to text v)

n,= # Relevant subjects

1237 0 [attention to be given]
2353 1

7114 2-4

6124 5-11

857 12 or more




FADDIS METHOD (2012, IN HOUSE): ONE CLUSTER AT A TIME

|5
: Mmu,f Z,yer (b~ §uu, )

* Equivalent to maximum of Rayleigh quotient (max eigenvalue)
Max uBu'/(uTu)

* Spectral approach (Shi, Malik, 2000): find min eigenvalue and its
vector, adjust the latter to fuzzy membership

* To make consistent [max], apply pseudo-inverse transformation to B

* Found 6 fuzzy clusters of which 3 are more or less homogeneous: L-
Machine Learning, C- Clustering, and | - Information
Retrieval




LAPLACIAN PSEUDO-INVERSE (LAPIN):

|6 ° Given B, convertinto L*
D=diag(B*/,)
B L=1-D'2BD-!2 L+

. " = pinv(L)
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Cluster L: Learning Cluster C: Clustering

Membership | Code Topic Membership | Code Topic

0.799 57738 rule learning 0.327 32147 | biclustering

(1.282 5271, batch learning 0.286 32143 | fuzzy clustering

0276 52.1.1.2. | learning to rank (1248 32142 | consensus clustering

0217 1.1.1.11. | query learning 0.220 32.1.46 | conceptual clustering
0216 5.2.1.3.3. | apprenticeship learning 0.192 524.31 | spectral clustering

0213 1.1.1.10. | models of learning 0.187 32141 | massive data clustering
0203 52.1.3.5. | adversarial learning (.159 32.1.7.3 | graphbased conceptual clustering
0.202 1.1.1.14. | active learning (1.151 32192 | trajectory clustering

1.191 52.1.4.1 | transfer learning (.14% 3137 database views

0.191 52.1.4.2 | lifelong machine learning 0.143 5119 language resources

00.188 1.1.1.5 online learning theory 0.141 344.3 language models

(1.165 R22.2 online learning settings 0138 32.1.44 | additive clustering

0.158 1.1.1.3 unsupervised learning and clustering 0.136 32145 | feature weight clustering
0.141 2.2.2.6. active learning settings 0.136 3458 | clustering and classification
0.136 52.1.1.4. | supervised learning by regression 0.135 313.12. | stream management

0.128 5225 learning from implicit feedback 0.131 347724 | music retrieval




CLUSTER R “RETRIEVAL’: U, 2 0.15

1 0.211 & 3.4.2.1. & query representation

0.207 & 5.1.3.2.1. & image representations
0.194 & 5.1.3.2.2. & shape representations
0.194 & 5.2.3.6.2.1 & tensor representation
0.191 & 5.2.3.3.3.2 & fuzzy representation
0.187 & 3.1.1.5.3. & data provenance
0.173&2.1.1.5. & equational models

0.173 & 3.4.6.5. & presentation of retrieval results
0.165 & 5.1.3.1.3. & video segmentation
0.155 & 5.1.3.1.2. & image segmentation




“TO GENERALIZE”
ACCORDING TO MERRIAM-WEBSTER (USA)

o A meaning:
- to give a general form to"

- to derive or induce (a general conception or

principle) from particulars"




GENERALIZATION: APPROPRIATELY LIFTING CLUSTERS
TO COMMON ROOT CONCEPTS

el A2 Al Al = B2 B3 Cl C2 C3 (C4

Given a taxonomy and a crisp leaf cluster, lift the leaves to a higher rank
node: (Al, A2, A3, A4,B1) => (A), B1 disregarded as an offshoot.




GENERALIZE: GIVEN 5 LEAVES IN A
CLWSTER,WHERE TO LIFT THAT? OPTION A

Head subject (A)

— 2=




GENERALIZE: GIVEN 5 LEAVES IN A CLUSTER,
WHERE TO LIFT THAT? OPTION B

Head subject (B) =

Gap Offshoot

.....



MINIMIZE THE PENALTY!

Penalty:
#Head Subject + A#Gap + y#Offshoot

Penalty at option A:  1+4A

Penalty at option B:  1+y+ A




ALGORITHM PARGENFS:

Parsimonious generalization
Output: set of head subjects H, minimizing

p(H) = Z ) + Z Z Av(g) + Z yu(h

heH—-1I heH—1I geG(h) he HNI
Penalties: A —for a gap, y for an offshoot, 1 for a head subject

| — leaf set of the taxonomy rooted tree,

u(h) — query fuzzy set membership function




. TCAN SOFTWARE

* GOT package (under renovation)

* Includes
* Relevance and co-relevance matrices
* FADDIS clustering (including LAPIN)
* Parsimonious lifting
* Visualization of taxonomy and lifting results

*Site URL: https://github.com/dmitsf/GOT

* Technical documentation: https://got-docs.readthedocs.io/



https://github.com/dmitsf/GOT

APPLYING GOT software TO the abstracts sample

® Lifting parameters (according to structure of DST)
o gap penalty: A=0.1,
o offshoot penalty: y=0.9

® 3 out of 6 clusters are interpretable (learning L, retrieval R, clustering C)

® FEach ofL, R, and C clusters is lifted with ParGenFS




Cluster L lifting: i

machine learning of

i l computation
earning paradigms learni ng settln & L

Iearn ng
approaches machine learning theo

Topic with support 0<u<=0.2

learning
to
rank
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Topic with support 0.2<u<=0.4
Topic with support u=0.4

st Head subjects: {Machine learning,

Gap

[
=
W
I
[
@

Machine learning theory, Learning to rank}




TENDENCIES OF DATA SCIENCE RESEARCH (PARTLY)

. A page long description
according to TCAN




TENDENCIES OF DATA SCIENCE RESEARCH (PARTLY)

« | hree clusters out of six:
. Learning

. Information retrieval

- Clustering




CLUSTER LIFTING RESULTS SUGGEST, I:

» “Learning” lifted: Conceptualization

o main work still on theory and method rather than
applications.

o Expanding from learning subsets and partitions
towards learning of ranks and rankings.

o Many subareas are not covered by publications.




CLUSTER LIFTING RESULTS SUGGEST 2:

» “Information retrieval” lifted: Conceptualization
» Head subjects:
(a) Information Systems, (b) Computer Vision
o Text management
o Moving from text to embrace images and video.
o Ways for structuring visual information probably
leading to a future "wordnet" for images




CLUSTER LIFTING RESULTS SUGGEST 3:

» “Clustering” cluster C lifted: Conceptualization

a 16 (!) head subjects, to be raised to higher ranks in Taxonomy of
Data Science

0 Should be lifted in the taxonomy from auxiliary roles to a main
concept, and instrument, in knowledge engineering.




COLLECTION 2: ABSTRACTS FROM SPRINGER U
3§LSEVIER, GOOGLE OUTPUTS TO QUERIES}

* Queries: clustering, machine learning, neural networks, algorithm,

classification, information retrieval, natural language processing,
software, computing, pattern recognition, deep learning,
probabilistic, artificial intelligence, support vector, Bayesian,

regression, search engine

* Collection 2: 26 799 abstracts from 80 journals 1971-2019




OTHER APPROACHES TO THE CHALLENGE

e Given: 17685 abstracts from |7 Springer journals in Data Science (1998-2017)
e Wanted: Provide a brief description of main contents

e Other approaches:

o |.Conventional content-analysis

o 2.Summarization

o 3.Co-citation and mutual citation graphs
o 4. Topic modeling




APPROACH 1: |. CONVENTIONAL CONTENT-ANALYSIS

® Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)
e Wanted: Provide a brief description of main contents

e (http://www.audiencedialogue.net/kya | 6a.html)

Content analysis is a method for summarizing any form of content by
counting various aspects of the content, like user-specified words or
concepts.

What for? For comparisons:

“27% of programs on Radio XXX in April 2017 mentioned at least one aspect
of peacebuilding, compared with only 3% of the programs in 2010 [or with
only 3% of the programs on Radio YYY]."

," "
‘A
£ M 1)

y

/A


http://www.audiencedialogue.net/kya16a.html

APPROACH 2: SUMMARIZATION

e Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)
e \Wanted: Provide a brief description of main contents

e 2.Summarization

o Extractive summarization: Automatic selection of “key”’ sentences from

text

o Abstractive summarization: Deep learning using Recurrent NN and

Convolutional NN for text embedding in vector spaces — seems a very

promising direction for the future.




APPROACH 3: CITATION AND CO-CITATION GRAPHS

e Given: 17685 abstracts from 17 Springer journals in Data Science (1998-2017)
e Wanted: Provide a brief description of main contents

e 2.Graph of co-citation or mutual citation between papers or
authors:

e papers A,B,C

® A List of references: B list of references C list of references
1.B,2.X,3.Y,4.Z,5.D I.A,2.E,3.Y,4.Z,5.F 1.B,2.Y,3.F4.E




APPROACH 3: EXAMPLE

o Co-citation or citation graph between papers or authors:
cluster analysis

e Example: Cluster “Information retrieval’ chen, bekwe-Sanjuan, Hou
(2010):

o prominent members of a cluster as the intellectual base
(books by G. Salton and C.Van Rijsbergen, and a paper by S.

Robertson)

- themes identified in the citers of the cluster as research
fronts (" information retrieval”, " probabilistic model”,
‘query expansion”, " "using heterogeneous thesauri)




noaxoAj 4: TEMATUHECKOE MOAOENTNPOBAHUE

e Given: 17685 abstracts from |7 Springer journals in Data Science (1998-2017)
e Wanted: Provide a brief description of main contents

e Data: Probability(word/text)

e Model: Matrix Factorization

Pr (word/text)= )., Pr(word/topic)* Pr(topic/text)




4. EXAMPLE: TOPIC MODELING (MUCH POPULAR), |

e | Information retrieval?

0.018*"'software", 0.0 18*"inform", 0.0 3*"query", 0.012*"retrieve",
0.012*"study", 0.01 I *"develop", 0.0 I*"product”, 0.0 10*"document”,
0.010*"user", 0.009*"engine", 0.009*"research", 0.008*"model",
0.008*"approach", 0.008*"search", 0.008*"busy", 0.008*"knowledge",
0.007*"manage", 0.007*"service", 0.006*"semantic", 0.006*"provide"
e 2 Text and images!?

0.020*"image", 0.012*"language”, 0.010*"model", 0.010*"retrieve",
0.010*"feature", 0.009*"propose", 0.009*"method", 0.009*"approach",
0.008*"inform", 0.008*"recognition", 0.008*"paper", 0.007*"process",
0.007*"network", 0.007*"base", 0.006*"present”, 0.006*"result",
0.006*"differ", 0.006*"system"




4. TOPIC MODELING (MUCH POPULAR),2

3 Classifiers?

0.018*"classify", 0. 01 6*"feature”, 0.01 3*"method", 0.0 | I*"classification",
0.01 I'*"result", 0.010*"data", 0.009*"perform", 0.009*"accuracy",
0.009*"propose”, 0.009*"'model", 0.009*"recognition”, 0.008*"base",
0.007*"image", 0.007*"study", 0.007*"differ", 0.006*"extract",
0.006*"predict”, 0.006*"pattern”, 0.006*"inform"

e 4 Clusters in networks!?

0.013*"algorithm", 0.012*"propose”, 0.012*"cluster”, 0.0 10*"graph”,
0.009*"method", 0.009*"base", 0.008*"paper", 0.008*"result",
0.008*"inform", 0.007*"data", 0.006*"function", 0.006*"network",

0.006*"model"




5 SAME APPROACH TO OTHER COLLECTIONS

. Visi 18036 : : | cafee |

Moscow, in Russian, TripAdvisor, 2019, 267 leaf subjects)

* «Cary» (35785 user reviews of cars)

* «Research journal contents» (abstracts of all 461 papers “Journal of
Classification” 1984-2019, leaf subjects 106)

* Results found, but nothing sensational; probably, our in-house taxonomies lack substance




CONCLUSION

43 « TCAN explicitly involves the contents and structure of a taxonomy of the
domain

~There i5-an originat component: Parsimonious tifting as a modet of —

generalization

* TCAN'’s use much depends on the usage of taxonomies in the
development of specific domains

* Future work: use of the maximum likelihood criterion in the problem of
optimal lifting

* Future work: Use of the optimal lifting in other applications (reconstruction
of the history of individual genes in phylogenetic trees, optimization of the
targeted advertising over Internet).
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