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Abstract.

It is quite common part of the data analysis in High Energy Physics to train a classifier for
signal and background separation. In case the signal under investigation is a rare process, the
signal sample is simulated and background sample is taken from the real data. Such setting
create an unnecessary bias: the classifier might learn not the characteristic of the signal but
the characteristic of the imperfect simulation. So the challenge is to train the classifier in such
way that it picks up signal/background difference and doesnt overfit to the simulation-specific
features. The suggested approach is based on cross-domain adaptation technique using neural
networks with gradient reversal. The network architecture is a dense multi-branch structure.
One branch is responsible for the signal/background discrimination, the second branch helps
to avoid the overfitting on the Monte-Carlo training dataset. The tests showed that this
architecture is a robust mechanism for choosing trade-offs between discrimination power and
overfitting. So the resulting networks successfully distinguishes the signal from the background,
but does not distinguish simulated events from the real ones. Moreover, such architecture
could to be easily extended with more branches, and each one could be responsible for specific
discrete and continuous domains. For example, the additional third network’s branch could
help to reduce the correlation between the classifier predictions and reconstructed mass of the
decay, thereby making such approach highly viable for wide variety of physics searches. But
such network’s extensions weren’t investigated during this work.

1. Introduction

Vast majority of data analyses in High Energy Physics relies on discrimination between
signal and background events. Physics has pioneered [3] and adopted application of the machine
learning (ML) approaches for that task. Methods like Decision Trees, Boosting and Neural
Networks play significant role in the modern physics discoveries. Today, with the advance of the
deep learning, new software frameworks and increased computational power neural networks are
becoming more and more popular.

However the application of a large number of machine learning methods for the problems of
High Energy Physics need to be considered with care. The reason for that is low generalization
quality and certain number of physical restrictions for discriminative models. Besides demand
for high values for corresponding figures of merit models should provide physically-sound result.
In this research we propose a new approach for building signal /background discriminator based
on neural networks for high energy physics problem. The method is based on cross-domain



adaptation technique with gradient reversal [4]. It suggests the following architecture for the
neural network: a common part (responsible for generation of important features) and three
branches connected to it: the first branch is responsible for signal detection, the second branch
helps to avoid overfitting on simulated events and and the third one avoids sculpting a false
mass peak.

2. Problem

Usage of the simulated sample is fairly common approach in the High Energy Physics.
However it is often hard to include all physics factors into Monte-Carlo (MC) simulation.
Moreover, not all variables can be simulated accurately enough, so the discrepancies may lead
either to:

(i)
(i)

High simulation costs of signal and background

ML models trained on simulated sample tend to overfit to the simulation artifacts and work
poorly on real data.
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Figure 1. Training on the mixture of the simulated (MC) and the real samples [5]

In this research, we consider 7 — 3u decay that has been published at the Data Science
challenge “Flavours of Physics“ on kaggle.com [6]. The challenge is three-fold:

(i)

(i)

The quality of the signal discrimination from the background should be as high as possible.
The evaluation metric for the signal discrimination is Weighted Area Under the ROC Curve
(truncated AUC) [6]

Due to the absence of signal events (7 — 3u) from data, the classifier should be trained
using a mixture of simulated signal (“A“, Fig. 1) and real data background (“B*, Fig. 1),
it is possible to demonstrate high performance by exploiting the features that are specific
to the simulation. It is required that the classifier should not have a large discrepancy
when applied to real and simulated data. To verify this, we use much more frequent control
channel, Dy — ¢ (“C“ and “D¥, Fig. 1), that has a similar topology as say the, 7 — 3u
(analysis channel), but contains both simulated (“C*, Fig. 1) and real (“D*, Fig. 1) signals.
Thus the goal is to train a classifier able to separate “A* from “B* but not “C* from “D*
(Fig. 1). A Kolmogorov-Smirnov (KS) test [10] [11] is used to evaluate the similarity
between the classifier output distributions on C and D. In our problem KS is calculated
between predictions distributions for real and simulated data for Dy — ¢ channel. The KS-
value of the test should be less than 0.09 (according to the original competition’s conditions

[6])-



(iii) The classifier output should not be correlated with the reconstructed mass feature, i.e. its
output distribution should not sculpt artificial peaks that could be interpreted as a (false)
signal. To test the flatness we have used Cramer-von Mises (CvM) test that gives the
uniformity of the distribution [7].
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Figure 2. Tllustration of the CvM correlation test [7]. On the left side there is no correlation
with mass (low CvM values). On the right side, the model’s predictions are highly correlated
with mass (high CvM values)

3. Baseline
At the moment of this publication the Data Doping [2] was the best technique to deal with
the classifier overfitting to MC-speficic features. We use this technique as the baseline.

The idea of Data Doping is to “dope“ the training sample with a small fraction of MC
events from the control channel (denoted by C at Fig. 1) labeled as background. Thus, it forbids
the classifier to rely on features discriminating real and background events. The optimal fraction
of the doping events was taken from [5].

4. Domain adaptation

As an alternative to Data Doping we applied method based on Cross-Domain adaptation
with gradient reversal [4]. The concept is similar to GAN (Generative Adversarial Nets) [9]: we
use an additional network branch that is trained to discriminate real from simulated (domain
classifier) events. During the training process we reverse the gradient from the domain classifier
in order to prevent the whole model from discrimination of the real signal from the simulation
(Fig. 3).

Instead of reversing the gradient it is possible to use the domain classifier loss function with
negative sign, since
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effectively using the negative cross-entropy (between predicted and target domain) as the
objective for Domain classifier (where Ly and ©4 means it’s cross-entropy loss and parameters
respectively).

The network architecture has a three separately fitable dense branches with common dense
part (Fig. 3) and consists of the following components (we will follow the definitions of the
original article of [4] below):

e Feature extractor - responsible for feature preprocessing;

e Label predictor - responsible for the target prediction (signal/background discrimination
with cross-entropy loss);
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Figure 3. Cross-domain adaptation with gradient reversal [4]

e Domain classifier - responsible for cross-domain adaptation and prevents the network from
overfitting to MC domain (with negative cross-entropy loss as described above);

e Mass predictor - helps to eliminate the correlation between classifier predictions and the
reconstructed mass of the decay (It wasnt tested in this research and our architecture was
tested without this part. It is omitted from the Figure 3. Theoretically it was designed as
additional branch, similar to domain classifier, working along the same principle).

5. Data

Training and test datasets (Analysis channel) consists of 67000+ and 855000+ events of
signal (7 — 3p) and background events respectively. Control channel consists of 71000+ events
of signal (Dgs — ¢m) and background. All events are described by 46 features. It is taken from
the “Flavours of Physics“ challenge [6].

6. Training

The architecture was implemented in Python 2.7 [1] using Lasagne (ver. 2.1) [2] framework.

The model was trained for 40 epoches with RMSProp optimizer. To achieve highest
stability and reproducibility we trained only Feature extractor and Label predictor parts several
(20) epoches with frozen Domain classifier and after that the Domain classifier was trained
concurrently with the first two parts.

During the first step only Feature extractor and Label predictor were trained. Domain classi-
fieris frozen, as mentioned above. Training procedure was 20-epoches RMSProp-optimization of
categorical (2-classes) cross-entropy (between analysis channel’s signal/background) loss. Batch
size was 1000. Learning rate at first step was 0.01 and was decayed 10 times each 5 epoches.

In the second step we restored Feature extractor and Label predictor from previous step and
trained all three parts. Feature extractor and Label predictor were trained in the same way (20
epoches, same loss, same batch size, same initial learning rate and the same learning rate decay
policy), but during this step the Domain classifier was concurrently trained each 6 batches of
Feature extractor and Label predictor’s training. The Domain classifier’s training parameters
are the same except the batch size (batch size=300).

To eliminate metric in the KS-test we increased such Domain classifiers parameters as learning
rate, corresponding batch size and batches frequency:

e learning rate ratios between branches (learning rate multiplier)



e batch size ratios. The best observed values were 1000 and 300 for Label predictor and
Domain classifier respectively

e batches frequency. The best observed ratio for number of batches per epoch was 6:1 for
Label predictor and Domain classifier respectively

Figure 4 represents such dependency from one of such parameters. It was observed that too
small values of KS makes CvM values higher and AUC metric smaller. So the goal was to find
balance between KS, CvM and AUC using parameters described above.
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Figure 4. Metrics dependency from domain classifiers learning rate multiplier

7. Results

In the research we’ve compared the following models: Baseline (label predictor from Fig. 4
without Domain Adaptation), Domain Adaptation (our approach), Data Doping. Models were
tested on 85000+ events of signal (7 — 3u) and background. KS and CvM thresholds were
chosen 0.09 and 0.02 respectively

The tests outcome is shown in (Table 1) demonstrates that this architecture is a robust
mechanism for choosing trade-off between discrimination power and overfitting.

As shown in the table below our method provides the best solution for signal detection
problem (7 — 3pu).

AUC (truncated) KS CvM

Baseline 0.999 0.18 0.0008
Data Doping 0.974 0.09 0.0011
Domain adaptation 0.979 0.06 0.0008

Table 1. AUC, KS, CvM scores for different approaches

From the table above we can conclude that the Domain Adaptation approach can be used for
training models on MC and real data mixture: it avoids using poorly simulated features while
keeping the discrimination quality quite high.

8. Conclusion

Domain Adaptation approach addresses important problem of modern data analysis in the High-
Energy Physics. It can be used without any special data pre-processing, giving flexibility to
control signal/background discrimination quality versus real/simulation mismatch overfitting.
The code is published on github [8] that demonstrate training/testing performed on public
dataset [6]. This approach is much more flexible than Data Doping since it can be easily extended
by additional restrictions (like mass-invariant predictions) by further network branching.
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