Пространственное неравенство в Москве: структура города и распределение благ в нем

Городничев А.В., эксперт Высшей школы урбанистики имени А.А. Высоковского НИУ ВШЭ

Данная работа посвящено проблеме оценки пространственного неравенства в Москве, вызванного структурной неоднородностью города: различиями в планировке кварталов, в качестве жилищного фонда, в транспортной доступности, демографии и т.д. Одним из признаков пространственного неравенства – это неравномерное распределение объектов обслуживания. Таким образом, цель исследования заключается в выявлении факторов, объясняющих размещение в городе предприятий (объектов обслуживания) – поставщиков услуг¹ жителям.

Исследование направлено на уточнение результатов, полученных ранее [2, 3], однако выявление и типологизация именно центров активностей (городских ядер), изучение их функционального наполнения являются вторичными целями. Хотя дихотомия «ядро-неструктурированная территория» представляет собой проявление пространственного неравенства, а «неравномерно-районированная модель» Высоковского фиксирует центры активности в городе, то есть сложную и взаимосвязанную систему центров города - полицентричность [4], однако модель не может объяснить качественное и функциональное различие между территориями (ядрами и другими частями города, также различия между самими ядрами), а лишь позволяет проявить систему центров, баланс и возможные изменения этого баланса в зависимости от обобщенной функциональной насыщенности различных территорий города

Проблема пространственного неравенства исследуется в городах Глобального Юга, где принимает форму изучения поляризации и социальной сегрегации [8], то есть уровня доступности благ. Москву нельзя причислить к городам, подобным Мехико, но неравенство в городе² сопоставимо с неравенством в Латинской Америке, таким образом для Москвы необходимо исследовать то, как социальное неравенство проявляется в пространстве.

Одновременно Москва схожа с постиндустриальными городами как Тайбэй и Сеул, экономическое развитие которых и достигнутый уровень жизни таков, что пространственное неравенство исследуется с точки зрения взаимосвязи рынка недвижимости и рынка услуг [7, 10], и в меньшей степени с качественным наполнением

-

 $^{^{1}}$ Под услугами понимаются как бытовые или финансовые услуги, так и доступ к розничной торговле, в том числе аптечной сети.

² Коэффициент Джини для Москвы – 0,432

территорий функциями и объектами обслуживания, как в случае с Мехико [8]. Правда проблема бедности в западных городах и ее пространственный аспект также является актуальной, в частности, исследуется связь доходов населения, доступность и качество услуг [9].

Исследования, посвященные пространственному неравенству в Москве на микроуровне, являются новым направлением, тут особо стоить выделить статью Попова А.А., изучающего рынок недвижимости с помощью выделенными им субрайонов [5]. В настоящее время исследовательские проекты в основном ограничиваются анализом дифференциации на районном уровне [6], однако уже есть работы с использованием больших и спонтанных данных, которые не скованы ограничениями официальной [1]. «Археология периферии» сфокусирована на проблеме статистики периферийных отношений, месте окраины в городской системе, однако из исследования был искусственно исключен центр Москвы, а анализ проводится на макроуровне. Вопросами размещения объектов торговли И услуг занимаются фирмы, специализирующиеся в геомаркетинге, результаты их работы носят закрытый и некомплексный характер.

Для проведения данного исследования была использована регулярная пространственная сетка, состоящая из одинаковых квадратных ячеек с ребром 500 метров. Использовать административные районы Москвы в качестве сетки не представляется возможным из-за их громоздкости, неспособности отражать разнообразие внутри них и малого количества (119 районов «старой» Москвы). Собираемые Росстатом данные агрегируются на районном уровне, что делает их непригодными для анализа внутрирайонных территорий. В отличие от Росстата национальные статистические службы США, Южной Кореи, Тайваня и других стран используют в своей практике относительно небольшие по площади и населению пространственные единицы (так называемые tract levels). В отсутствие данных, которые обычно собирают национальные статистические службы и используются в подобных исследованиях в развитых странах, в данном исследовании привлекаются следующие источники: 1) портал открытых данных Москвы; 2) данные БТИ Москвы; 3) данные Open Street Map; 4) данные мобильных операторов; 5) база данных компании Яндекс об объектах обслуживания в Москве; 6) сведения об аренде недвижимости специализированных сайтов (предоставлены компанией Нотеарр).

Исследование строится на основе использования статистических методов, в том числе регрессионной модели (метод наименьших квадратов). Также используется методы

пространственного анализа данных и географического картографирования. Следующие факторы включены в модель для объяснения расположения объектов обслуживания (в виде переменных факторы указаны в Таблице 1): 1) конфигурация улично-дорожной сети; 2) характеристики недвижимости³ 3) расстояние от центра города; 4) размер рынка предоставляемых услуг⁴. Исследование было проведено в три этапа.

Таблица 1.

N_0N_0	Переменная	Количество/су	Среднее	Мин.	Макс.
		мма			
0	Регулярная сетка (квадратные ячейки с ребром 500 метров)	2994 ячейки			
1	Зависимая переменная:				
1.1	Количество объектов обслуживания	193209	64,5	1	3145
2	Независимые переменные:				
2.1	Количество жителей	8801549	2939	15	12826
2.2	Количество работников (рабочих мест)	5516274	1842	23	16896
2.3	Площадь коммерческой недвижимости	182415156	73645	21	859916
2.4	Средний возраст зданий		1972	1554	2015
2.5	Показатель «контроль» УДС		39206	72	71104
2.6	Плотность УДС (% площади УДС от площади ячейки)		8,01%	0,18%	100%
2.7	Расстояние до центра города (км)		12	0	28,5

На первом этапе с помощью методов пространственного анализа данных было подтверждено наличие неоднородности городского пространства в Москве, однако утверждать о значимом неравенстве и тем более сегрегации не представляется возможным. Результаты пространственного анализа представлены в приложениях 1-8. Неоднородность городского пространства выражается в отношениях «центр-периферия», причем нет только одного центра и только одной периферии. Первый центр — это концентрация объектов обслуживания в исторической части города, границы которой очерчены застройкой, средний возраст которой не превышает 1953 года Вне этого центра располагается неоднородная периферия со своими субцентрами. Второй центр, географически упирающийся в Московское центральное кольцо, включает в себя как концентрацию рабочих мест 7, так и основные площади коммерческой недвижимости 8.

³ Площадь нежилой недвижимости и средний возраст зданий

⁴ Под размером рынка понимается как численность населения, так и количество рабочих мест.

⁵ Приложение 1.

⁶ Приложение 5.

⁷ Приложение 2.

⁸ Приложение 3.

Периферией по отношению к этому центру выступают так называемые «спальные районы» Москвы, однако селитебная зона города характеризуется большим разнообразием: размещением пятиэтажного фонда, основными и предпочтительными территориями для нового строительства⁹, а также ценой аренды жилья. Анализ средней цены аренды указывает на иную конфигурацию центр-периферийных отношений, что отражено на картосхеме в приложении 8 – к историческому центру тяготеют территории вдоль Ленинского проспекта. Картографирование результатов анализа улично-дорожной сети также выделяет особое значение исторического центра¹⁰.

Таблица 2.

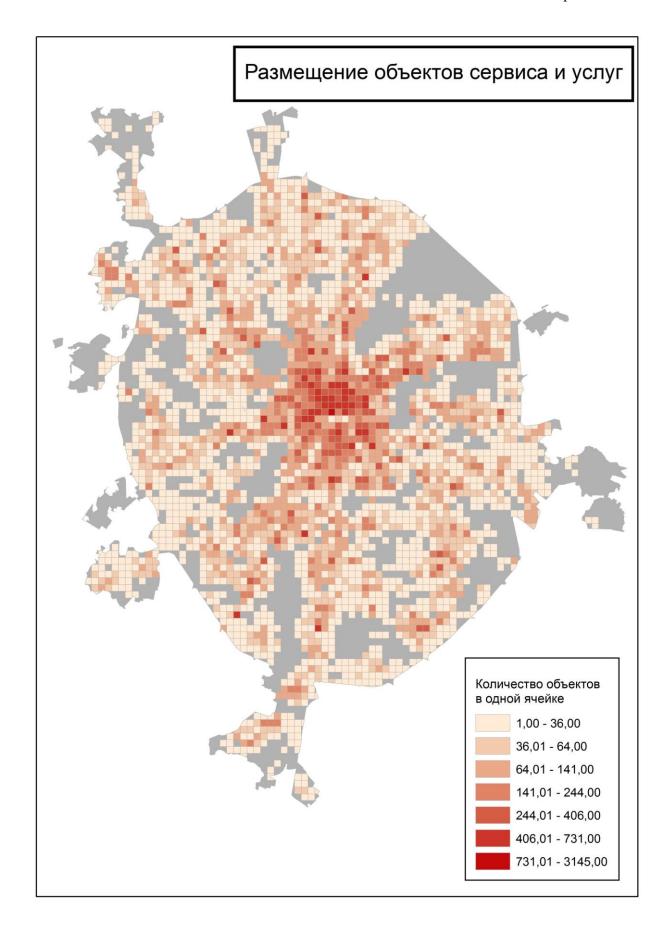
Переменная	Estimated	t-Statistic	VIF
	coefficient (log)		
Константа	34,750857	2,841336	
Количество жителей	0,405355	19,001354	1,918387
Количество работников (рабочих мест)	0,425678	12,991774	4,717808
Площадь коммерческой недвижимости	0,312832	18,413561	2,369213
Средний возраст зданий	0,023047	2,496118	1,327704
Показатель «контроль» УДС	0,352536	15,352425	1,426556
Плотность УДС	-0,135634	-3,185031	2,950731
Расстояние до центра города	-5,127109	-3,127895	1,578072
Adjusted $R^2 = 0.681$			
*Significant p-value (p < 0,01)			

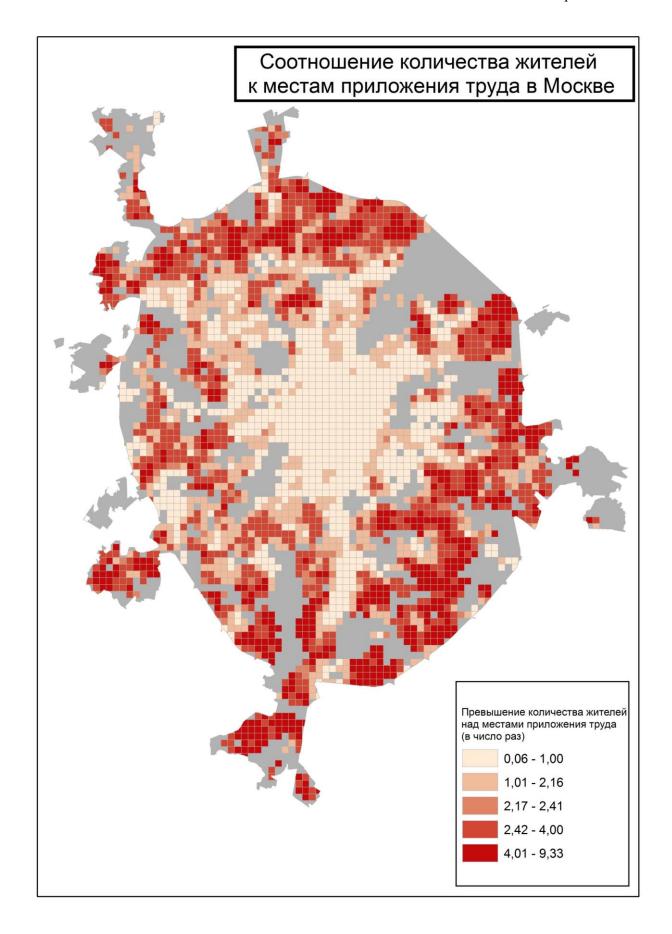
Второй этап заключался в построении регрессионной модели, переменные перечислены в Таблице 1, все переменные были логарифмированы. Результаты указаны в Таблице 2. Все факторы оказывают влияние на размещение объектов обслуживания. Потенциальный размер рынка, выраженный как через количество работников, так и через число жителей, является ключевым фактором. При анализе количества работников (рабочих мест), нужно учитывать, что объекты обслуживания тоже создают рабочие места, но в их число не включены промышленные предприятия, бизнес-центры (офисы), занятые в строительстве. Третьим фактором по важности выступает показатель связанности территорий – «контроль» улично-дорожной сети. Этот показатель позволяет определить наличие уникальных и важных улиц и дорог, которые обеспечивают доступ в другие части города.

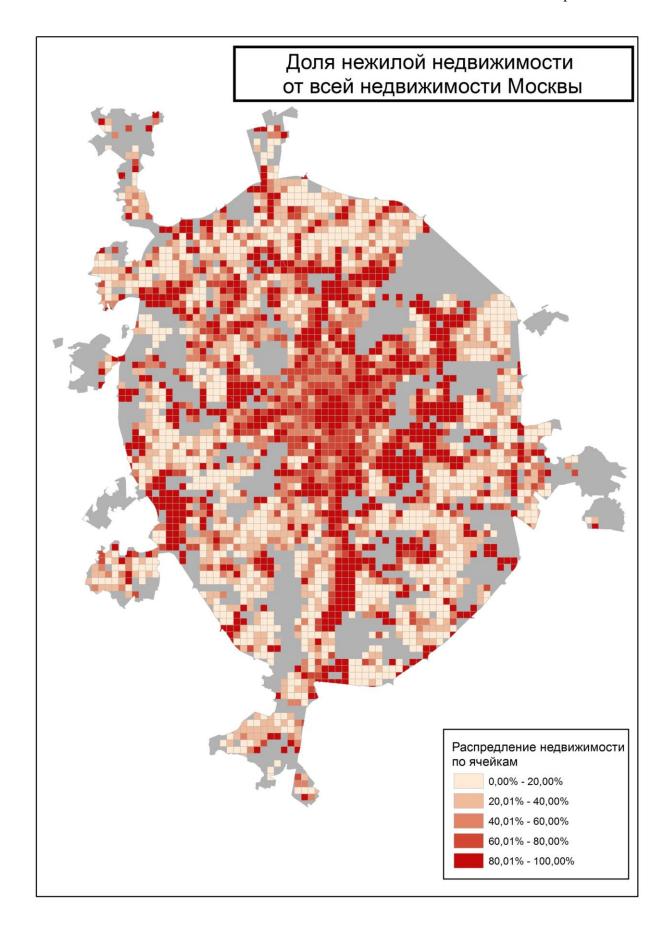
На заключительном третьем этапе были проанализированы невязки регрессионной модели с помощью метода горячих точек, которые позволил определить

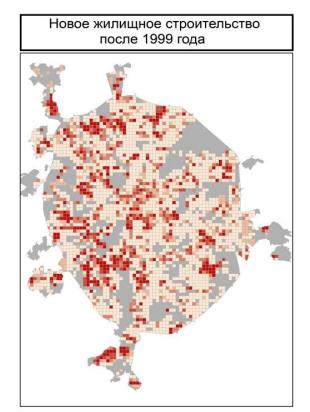
_

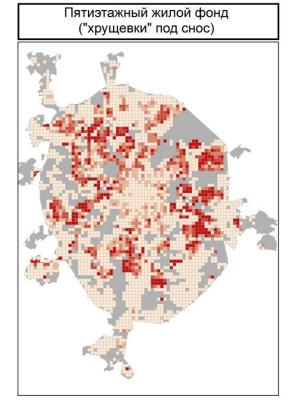
⁹ Приложение 4.


¹⁰ Приложение 6 и 7.


пространственную автокорреляцию переменных — результаты представлены на картосхеме в Приложении 9. Кластеризация ячеек красного цвета говорит о наличии иных переменных, не включенных в модель. В данный момент нельзя точно определить, какие именно переменные были упущены, однако можно предположить, что часть кластеров объясняется наличием значимых городских субцентров, роль которых усилена функциями транспортно-пересадочных узлов. Один из кластеров является исключением — там находится ВДНХ.


В результате проведенного исследования были определены факторы неоднородности городского пространства, влияющие на распределение в Москве объектов обслуживания. Данные факторы объясняют роль исторического центра Москвы в пространственной структуре города: высокая плотность рабочих мест, связанность территорий, развитость улично-дорожной сети. В то же время они значимы и для городской периферии, если территории которой имеют схожие с центром конфигурации факторов. Сглаживание последствий пространственной неоднородности и неравенства, выраженного в рамках «центр-периферийных» отношений, возможно через развитие городских субцентров с помощью насыщения их новыми функциями, созданием рабочих мест и улучшения связанности территорий.


Библиография:


- 1. Археология периферии / под. ред. Григоряна Ю. М.: Московский урбанистический форум, 2014. 266.
- 2. Гончаров Р.В., Никогосян К.С. Выявление центров активности в городе: сопоставление объективных и когнитивных данных [Электронный ресурс] / XVII Апрельская международная научная конференция по проблемам развития экономики и общества (Москва), 19-22 апреля 2016 г. Режим доступа: http://regconf.hse.ru/uploads/f4cdf361c907554166081358b7c48a613e2790f4.pdf
- 3. Котов Е.А., Гончаров Р.В., Новиков А.В. и др. Москва: курс на полицентричность. Оценка эффектов градостроительных проектов на полицентрическое развитие Москвы / Науч. ред.: Баевский О.А., Витков Г.В., Шварева Т.Е. М.: [б.и.], 2016. С. 32
- 4. Котов Е.А., Городничев А.В. Тенденции девелопмента в Москве: развитие новых центров, усиление существующих или точечная застройка? [Электронный ресурс] / XVII Апрельская международная научная конференция по проблемам развития экономики и общества (Москва), 19-22 апреля 2016 г. Режим доступа: http://regconf.hse.ru/uploads/ed01a792b48fbcd1ce5fb4322859461a79c0971d.pdf
- Попов А.А. Пространственно-временной анализ факторов ценообразования на рынке жилой недвижимости Москвы / А.А. Попов // Региональные исследования. – 2014. – № 4. – С.70-80
- 6. Пузанов К.А., Степанцов П.М. Механика Москвы. Исследование городской среды / К.А. Пузанов, П.М. Степанцов. М.: Издание Московского института социально-культурных программ, 2014. 68.
- Jang M., Kang C.-D. Retail accessibility and proximity effects on housing prices in Seoul, Korea: A retail type and housing submarket approach // Habitat International. 2015. # 49. P. 516-528
- 8. Ruiz-Rivera N., Suarez M., Delgado-Campos J. Urban segregation and local retail environments. Evidence from Mexico City // Habitat International. 2016. # 54. P. 58-64
- 9. Schuetz J., Kolko J., Meltzer R. Are poor neighborhoods "retail deserts"? // Regional Science and Urban Economics. 2012. # 42. P. 269-285
- 10. Tsou K.-W., Cheng H.-T. The effect of multiple urban network structures on retail patterns A case study in Taipei, Taiwan // Cities. 2013. # 32. P. 13-23

