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Preliminaries

Let function F : Fm
q → Fm

q be a key-alternating substitution-permutation networks
(SP-networks or SPN). We suppose that F is composed of a layer of substitution boxes
(S-boxes), and a layer of bit permutations. Let

FK(x) = F(x)⊕ K = X[K] (F (x))

be a round function (incuding the key addition), F(x) = L ◦ S(x), where
S: Fm

q → Fm
q , S(x) = S(x1, . . . , xm) = (π(x1), . . . , π(xm));

L: Fm
q → Fm

q , L(x) = x · L, L ∈ GLm(q), L = (li,j)m×m, li,j ∈ F∗
q.

Such an SP-network will be denoted as SPN∗.
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Invariant attacks

The core idea of a nonlinear invariant attack is to find a function g : Fm
q → F2 so that

there are many keys K:

g (FK(x)) = g(x⊕ k)⊕ c = g(x)⊕ g(k)⊕ c ∀x ∈ Fm
q .

In particular, if there is a subset G of Fm
q so that

{FK(x), x ∈ G} = G (or for the simplicity FK(G) = G). (1)

for a lot of keys K, the function g is an indicator function of the subset G. This idea can
be generalized as follows. Let G ⊂ Fm

q , r ∈ N and

FKi+r ◦ . . . ◦ FKi(G) = G

for a set of vectors of keys {(Ki, . . . ,Ki+r)}. The set G can be used to apply an invariant
attack. The problem is how to find a way to construct such a subset. The easiest way to
do it is to use the invariants of functions S and L.
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Set G construction I

Let A and B be a pair of families of sets

A = {A1,A2, . . . ,Aea} , Ai ⊆ Fq,

B = {B1,B2, . . . ,Beb} , Bi ⊆ Fq

and for any i ∈ {1, . . . , ea} there is j ∈ {1, . . . , eb} so that π (Ai) ⊆ Bj.
If families Am and Bm are the Cartesian product of families A and B correspondingly,
then for any element Ai1 × . . .× Aim ∈ Am, there is an element Bj1 × . . .× Bjm ∈ Bm so
that

S (Ai1 × . . .× Aim) = (π(Ai1)× . . .× π(Aim)) ⊆ Bj1 × . . .× Bjm .
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Set G construction II

Suppose that set G is a subset of family Am and r = 0. That means that there is a key K
so that the following diagram is true:

Ai1 × . . .× Aim
S−→ Bj1 × . . .× Bjm! "# $

∈Bm

L−→ C!"#$
∈C

X[K]−−→ Ai1 × . . .× Aim! "# $
∈Am

. (2)

An obvious consequence of this diagram is the following

Proposition

Let F : Fm
q → Fm

q be a round function of a key-alternating SPN∗. If there is a key K so
that the diagram (2) is true, then the family

C = LS (Ai1 × . . .× Aim)

has a form Cl1 × . . .× Clm , where Clj , j ∈ {1, . . . ,m} is a subset of a Fq.



6/20

Set G construction III

Using the same idea we can generalise this approach for r ≥ 0. Let G = (V,E) be an
oriented graph, with vertices

V =
%
Ai1 × . . .× Aim |Aij ⊆ Fq, j ∈ {1, . . . ,m}

&
.

An edge
'
Ai′1 × . . .× Ai′m ,Ai′′1 × . . .× Ai′′m

(
is in E if and only if there is a key K so that

FK
'
Ai′1 × . . .× Ai′m

(
= Ai′′1 × . . .× Ai′′m .

The generalization of an invariant attack is possible if there is a cycle in G. If diagram
(2) is true then there is a loop in G, if |E| = 0 then the attack is impossible.
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Set G construction IV

If there is a cycle of length r + 1 in G then the following diagram is true:

Ai1 × . . .× Aim
S−→ Bj1 × . . .× Bjm

L−→ Cl1 × . . .× Clk
X[Ki]−−→

X[Ki]−−→ Ao1 × . . .× Aok
X[Ki+r]−−−−→ . . .

X[Ki+r]−−−−→ Ai1 × . . .× Aim .

Then Ai1 × . . .× Aim ∈ G and

FKi+r ◦ . . . ◦ FKi (Ai1 × . . .× Aim) = Ai1 × . . .× Aim .
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Set G construction V

Proposition

Let F : Fm
q → Fm

q be a round function of a key-alternating SPN∗, A′ = Ai′1 × . . .× Ai′m and
A′′ = Ai′′1 × . . .× Ai′′m be two vertices of the same cycle of graph G,

B′ = S (A′) , C′ = LS (A′) , B′′ = S (A′′) , C′′ = LS (A′′) .

Then
B′ = Bj′1 × . . .× Bj′m , B

′′ = Bj′′1 × . . .× Bj′′m ∈ Bm,
C′ = Cl′1 × . . .× Cl′m , C

′′ = Cl′′1 × . . .× Cl′′m ∈ Am,
))Ai′1

)) = . . . =
))Ai′m

)) =
))Bj′1

)) = . . . =
))Bj′m

)) =
))Cl′1

)) = . . . =
))Cl′m

)),
))Ai′1

)) =
))Ai′′1

)).
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Set G construction VI

Theorem
Let F : Fm

q → Fm
q be a round function of a key-alternating SPN∗, Ai1 × . . .× Aim is a

vertex of a cycle of graph G,
S (Ai1 × . . .× Aim) = Bj1 × . . .× Bjm ,

L(Bj1 × . . .× Bjm) = Cl1 × . . .× Clm .
Then

1 Aiz , Bjz , Clz are some cosets of (Fq,⊕), z = {1, . . . ,m};
2 for any z ∈ {1, . . . ,m} there is c ∈ Fq where π(c⊕ Clz) is a coset of (Fq,⊕).

This theorem sets up a way of finding the invariant subset G. First of all we need to
enumerate pairs (Ai,Bi) of coset of (Fq,⊕) so that π(Ai) = Bi.
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Set G construction VII

Theorem
Let F : Fm

q → Fm
q be a round function of a key-alternating SPN∗, Ai1 × . . .× Aim is a

vertex of a cycle of graph G, Bj1 × . . .× Bjm = S (Ai1 × . . .× Aim). For any
z ∈ {1, . . . ,m} Aiz , Bjz = Bjz ⊕ bjz is a coset of (Fq,⊕), Bjz is a subgroup, and

Uz = {0}× . . .× {0}× Bjz! "# $
z

×{0}× . . .× {0}.

Then the set Wz = L (Uz) takes the form of:

Wz = Wz1 × . . .×Wzm ,

where Wzh is a coset of (Fq,⊕) so that there is a constant ch where π (Wzh ⊕ ch) is a coset
of (Fq,⊕), h = {1, . . . ,m}.
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Kuznyechik permutation properties I

The TU-decomposition was first presented in
“Reverse-engineering the SBox of Streebog,
Kuznyechik and STRIBOBr1” by Alex Biryukov, Leo
Perrin, and Aleksei Udovenko., 2016

It consists of:
linear transformations V8 → V8: α and ω

non-linear transformations V4 → V4: ν0, ν1, I, σ,
ϕ

multiplication in Galois field GF
'
24,⊚,⊕

(
=

GF(2)[x]/(f (x)) with irreducible polynomial
f (x) = x4 ⊕ x3 ⊕ 1
multiplexer (if-else construction)
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Kuznyechik permutation properties II

According to Theorem 1, we must look for coset Ai, which is mapped by the S-Box to
some coset Bi. Let us show that the BPU-decomposition allows us to extract such cosets.

Proposition

For S-Box π of Kuznyechik there are two pairs of subgroups (Ai,Bi)

A1 =
%
α−1 (0xd · x‖x)

)) x ∈ F24
&
, B1 = {β (0‖y)| y ∈ F24},

A2 =
%
α−1 (x‖0)

)) x ∈ F24
&
, B2 = {β (y‖0)| y ∈ F24},

so that there is a, b ∈ F8
2 : π(Ai ⊕ a) = Bi ⊕ b.
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Kuznyechik permutation properties III

Figure: !π maps A′
1 to B′

1
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Kuznyechik permutation properties IV

The proved proposition only indicates that such cosets exist, but does not prove that
others do not exist. To enumerate them all, let’s consider an algorithm that works for any
permutation. Let span(S) be a linear span of set S. Using the ideas from [?] the following
algorithm can be proposed:

Algorithm 1. (Naive)
1 i := 0
2 for every a, b ∈ Fq:

1 Ai ← {0};
2 Bi ← span (π (Ai ⊕ a)⊕ b);
3 Ai ← span

"
π−1 (Ai ⊕ b)⊕ a

#
;

4 if Ai = span(Ai) then:
if |Ai| ∕= 28, print(Ai = Ai ⊕ a,Bi = Bi ⊕ b), i ← i+ 1;
for every x ∈ F8

2\Ai: Ai ← span (Ai ∪ x), go to step (2.b);
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Kuznyechik permutation properties V

Definition
A pair of sets (Ai,Bi) is an I pair of sets for permutation π : Fq → Fq if there is a, b ∈ Fq
so that

π(Ai ⊕ a) = Bi ⊕ b.

Subspaces Ai and Bi are called LI and RI sets for π correspondingly.

In proprosition 3 we found two I pairs of sets (Ai,Bi) for permutation π; every set
consists of 16 elements. Using algorithm 1 one can find such pairs of sets of any size.
We implemented it and founded:

2 I pairs (Ai,Bi), |Ai| = |Bi| = 16;
1 943 I pairs (Ai,Bi), |Ai| = |Bi| = 4;
2 730 I pairs (Ai,Bi), |Ai| = |Bi| = 2.
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Impossibility attack details I

Using theorem 2 we can propose the following approach to prove the impossibility of an
invariant attack. Let (Ai,Bi) be an I pair for permutation π. Consider

B(j)
i = {0}× . . .× {0}! "# $

j−1

×Bi × {0}× . . .× {0},

L
*
B(j)
i

+
= C(j)

i =
,*

c(j,1)i,k , . . . , c(j,m)i,k

+
, k = 1, . . . , |Bi|

-
.

It follows from theorem 2 that every set

C(j,l)
i =

,
c(j,l)i,k , k = 1, . . . , |Bi|

-

must be Ad — a subset of an LI set for π. Then

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2

is a subgroup of (Fq,⊕).
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Impossibility attack details II

Using a computer calculation and the ideas presented above we proved the following

Proposition

Let π be a permutation, L be a linear and S be a nonlinear transformation of the
Kuznyechik algorithm. Then for every I pair (Ai,Bi), |Bi| > 1, for permutation π and for
every j = {1, . . . ,m}, there is l = {1, . . . ,m} so that C(j,l)

i is not a subset of any subgroup
Ad so that

∃ c1, c2 ∈ F24 : π (Ad ⊕ c1)⊕ c2
is a subgroup of (Fq,⊕).
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Impossibility attack details III

Let’s consider the most interesting example and take into account an I pair of sets (Ai,Bi)
proposition 3:

A1 = {0x00, 0x05, 0x22, 0x27, 0x49, 0x4c, 0x6b, 0x6e, 0x8b, 0x8e, 0xa9, 0xac,
0xc2, 0xc7, 0xe0, 0xe5}, B1 = {0x00, 0x01, 0x0a, 0x0b, 0x44, 0x45, 0x4e, 0x4f,
0x92, 0x93, 0x98, 0x99, 0xd6, 0xd7, 0xdc, 0xdd};
A2 = {0x00, 0x01, 0x0a, 0x0b, 0x44, 0x45, 0x4e, 0x4f, 0x92, 0x93, 0x98, 0x99,
0xd6, 0xd7, 0xdc, 0xdd}, B2 = {0x00, 0x02, 0x04, 0x06, 0x10, 0x12, 0x14, 0x16,
0x20, 0x22, 0x24, 0x26, 0x30, 0x32, 0x34, 0x36};

There are the largest LI and RI sets for π. We also can mention that B1 = A2.
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Impossibility attack details IV

If we consider
B1
1 = B1 × {0}× . . .× {0}

then C1,1
1 = B1 = A2 because the linear transformation of Kuznyechik is based on LFSR

with the least feedback coefficient equal to e ∈ F8
2. At the same time neither

C1,2
1 ∕= A1 ⊕ a nor C1,2

1 ∕= A2 ⊕ a for any a ∈ F28 which means that Ai1 in G is not A1 ⊕ c
for any c ∈ F28 . Much simpler:

B1
2 = B2 × {0}× . . .× {0}.

In this case C1,1
2 = B2 ∕= A1 and C1,1

2 = B2 ∕= A1.
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Conclusion

We presented a new approach to invariant attacks based on S-box properties of an
SPN∗. Kuznyechik is an SPN∗ since it has a linear layer based on an MDS-matrix.
Using a computer calculation we enumerated all I pairs for permutation π of the
Kuznyechik algorithm and proved the impossibility of a generalised invariant attack.


