A Compact Bit-Sliced Representation of Kuznyechik S-box

O. Avraamova ${ }^{1}$, D. Fomin 2, V. Serov ${ }^{1}$, A. Smirnov ${ }^{1}$, and V. Shokov ${ }^{1}$
${ }^{1}$ Lomonosov Moscow State University, Russia
${ }^{2}$ Higher School of Economics, Russia
olga.avraamova@gmail.com, dfomin@hse.ru, v_serov_@mail.ru, asmirnov80@gmail.com, shokov@srcc.msu.ru
©Academy of Cryptography of the Russian Federation, 2020

September 15, 2020
...Determing the manner of operation of a given switching circuit, is comparatively simple. The inverse problem of finding a circuit satisfying certain given operating conditions, and in particular the best circuit is, in general, more difficult and more important from the practical standpoint

Claude E. Shannon
The Synthesis of Two-Terminal Switching Circuit, 1949

There are several different "decomposition" the S-box of Kuznyechik ${ }^{1}$:

Figure: The $T U$-decomposition

Figure: The log-based decomposition

[^0] Cryptology ePrint Archive, Report 2019/092

Piano

Bricks
4.1.1 Нелинейное биективное преобразование

В качестве нелинейного биективного преобразования выступает подстановка
$\pi=$ Vec $_{8} \pi^{\prime} \operatorname{Int}$ g $V_{8} \rightarrow V_{8}$, где $\pi^{\prime}: \mathbb{Z}_{2^{8}} \rightarrow \mathbb{Z}_{2^{5}}$. Значения подстановки π^{\prime} записаны ниже в виде массива $\pi^{\prime}=\left(\pi^{\prime}(0), \pi^{\prime}(1), \ldots, \pi^{\prime}(255)\right)$:
$\pi^{\prime}=(252,238,221,17,207,110,49,22,251,196,250,218,35,197,4,77,233$, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241. 187, 20, 205, 95, 193, 249, 24, 101 $90,226,92,239,33,129,28,60,66,139,1,142,79,5,132,2,174,227,106,143$ $160,6,11,237,152,127,212,211,31,235,52,44,81,234,200,72,171,242,42$
$104,162,253,58,206,204,181,112,14,86,8,12,118,18,191,114,19,71,156$ $183,93,135,21,161,150,41,16,123,154,199,243,145,120,111,157,158,178$, $177,50,117,25,61,255,53,138,126,109,84,198,128,195,189,13,87,223$ $245,36,169,62,168,67,201,215,121,214,246,124,34,185,3,224,15,236$, $222,122,148,176,188,220,232,40,80,78,51,10,74,167,151,96,115,30,0$ $98,68,26,184,56,130,100,159,38,65,173,69,70,146,39,94,85,47,140,163$
$165,125,105,213,149,59,7,88,179,64,134,172,29,247,48,55,107,228,136$ $217,231,137,225,27,131,73,76,63,248,254,141,83,170,144,202,216,133$, $97,32,113,103,164,45,43,9,91,203,155,37,208,190,229,108,82,89,166$ $116,210,230,244,180,192,209,102,175,194,57,75,99,182)$.

\longrightarrow
Lego Piano

\longrightarrow

Boolean function minimization basis $\{A N D, O R, N O T, X O R\}$

The TU-decomposition was first presented in "Reverse-engineering the SBox of Streebog, Kuznyechik and STRIBOBr1" by Alex Biryukov, Leo Perrin, and Aleksei Udovenko., 2016

It consists of:

- linear transformations $V_{8} \rightarrow V_{8}: \alpha$ and ω
- non-linear transformations $V_{4} \rightarrow V_{4}: \nu_{0}, \nu_{1}, I, \sigma$, φ
- multiplication in Galois field $G F\left(2^{4}, \odot, \oplus\right)=$ $G F(2)[x] /(f(x))$ with irreducible polynomial $f(x)=x^{4} \oplus x^{3} \oplus 1$
- multiplexer (if-else construction)
$l=\left(l_{1}, l_{2}, l_{3}, l_{4}\right), r=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ be representations of field elements as vectors. Then α has the following Boolean representation:

$$
\alpha=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Total α and $\omega: 14$ XOR

$$
\begin{aligned}
& \alpha_{1}(l, r)=r_{1} \\
& \alpha_{2}(l, r)=l_{2} \oplus r_{4} \\
& \alpha_{3}(l, r)=l_{2} \oplus r_{3} \oplus r_{4}=\alpha_{2}(l, r) \oplus r_{3} \\
& \alpha_{4}(l, r)=l_{1} \oplus l_{2} \oplus l_{3} \oplus r_{1} \oplus r_{2} \oplus r_{3} \oplus r_{4}= \\
& =\alpha_{2}(l, r) \oplus \alpha_{5}(l, r) \oplus l_{3} \oplus r_{2}, \\
& \alpha_{5}(l, r)=l_{1} \oplus r_{1} \oplus r_{3}=l_{1} \oplus p_{1}, \\
& \alpha_{6}(l, r)=l_{2} \oplus r_{2} \\
& \alpha_{7}(l, r)=l_{4} \oplus r_{1} \oplus r_{3}=l_{4} \oplus p_{1}, \\
& \alpha_{8}(l, r)=l_{3} \\
& p_{1}=r_{1} \oplus r_{3}
\end{aligned}
$$

Using the standard basis of $G F\left(2^{4}\right)\left\{\mathbf{e}_{1}=(1000), \mathbf{e}_{2}=(0100), \mathbf{e}_{3}=(0010)\right.$, $\left.\mathbf{e}_{4}=(0001)\right\}$ it is easy to show that the every coordinate $z^{k}, k \in \overline{1,4}, \mathbf{z}=\mathbf{x} \odot \mathbf{y}$, $x, y, z \in G F\left(2^{4}\right)$ is a quadratic form:

$$
\begin{gathered}
\mathbf{z}^{k}=(\mathbf{x} \odot \mathbf{y})^{k}=\left(\left(\sum_{i=1}^{4} x^{i} \mathbf{e}_{i}\right) \odot\left(\sum_{j=1}^{4} y^{j} \mathbf{e}_{j}\right)\right)^{k}=\sum_{i, j} x^{i} \cdot y^{j}\left(\mathbf{e}_{i} \odot \mathbf{e}_{j}\right)^{k} \Rightarrow \\
\Rightarrow z^{k}=\left(x^{1}, x^{2}, x^{3}, x^{4}\right)\left(\begin{array}{ccc}
c_{11}^{k} & \ldots & c_{14}^{k} \\
\vdots & \ddots & \vdots \\
c_{41}^{k} & \ldots & c_{44}^{k}
\end{array}\right)\left(\begin{array}{c}
y^{1} \\
y^{2} \\
y^{3} \\
y^{4}
\end{array}\right) .
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{z}=\mathbf{x} \odot \mathbf{y}, \mathbf{z}=\left(z^{1}, z^{2}, z^{3}\right. & \left., z^{4}\right), \mathbf{x}=\left(x^{1}, x^{2}, x^{3}, x^{4}\right), \mathbf{y}=\left(y^{1}, y^{2}, y^{3}, y^{4}\right): \\
z_{1} & =\left(P_{2} \oplus x_{4}\right) \cdot y_{1} \oplus P_{2} \cdot y_{2} \oplus P_{1} \cdot y_{3} \oplus x_{1} \cdot y_{4}, \\
z_{2} & =x_{1} \cdot y_{1} \oplus x_{4} \cdot y_{2} \oplus x_{3} \cdot y_{3} \oplus x_{2} \cdot y_{4}, \\
z_{3} & =P_{1} \cdot y_{1} \oplus x_{1} \cdot y_{2} \oplus x_{4} \cdot y_{3} \oplus x_{3} \cdot y_{4}, \\
z_{4} & =P_{2} \cdot y_{1} \oplus P_{1} \cdot y_{2} \oplus x_{1} \cdot y_{3} \oplus x_{4} \cdot y_{4}, \\
P_{1} & =x_{1} \oplus x_{2} \\
P_{2} & =x_{1} \oplus x_{2} \oplus x_{3}=P_{1} \oplus x_{3} .
\end{aligned}
$$

Total: 31 Boolean operations

There is an "if-else" construction in the considered decomposition:
"2.If $r=0$ then $l:=\nu_{0}(l)$ else $l:=\nu_{1}(l \odot I(r)) "$

Let $I_{0,0,0,0}(r)$ be a Boolean function which takes the value 1 in a single point $r=(0,0,0,0)$ then this construction can be expressed by a formula:

$$
l^{i}=I_{0,0,0,0}(r) \cdot \nu_{0}^{i}(l)+\overline{I_{0,0,0,0}(r)} \cdot \nu_{1}^{i}(l \odot I(r)), \quad i=1, \ldots, 4
$$

It can be rewriten as follows:

$$
l^{i}=I_{0,0,0,0}(r) \cdot\left(\nu_{0}^{i}(l) \oplus \nu_{1}^{i}(0)\right) \oplus \nu_{1}^{i}(l \odot I(r)), \quad i=1, \ldots, 4
$$

Using the fact that

$$
I_{0,0,0,0}(r)=\bar{r}_{1} \cdot \bar{r}_{2} \cdot \bar{r}_{3} \cdot \bar{r}_{4}=\overline{r_{1}+r_{2}+r_{3}+r_{4}} .
$$

and $\nu_{1}^{i}(0)=(0,0,1,0)$ we can implement branching using operations that are given in a table below:

	AND	OR	NOT	XOR	Total
$\overline{I_{0,0,0,0}(r)}$		3			3
$I_{0,0,0,0}(r)$			1		1
Final glue by every coordinate	1			$1(2)$	
Final glue for all coordinaetes	4			5	9

Total: 13 Boolean operations

There are 5 non-linear elements in the considered decomposition:

I	$0,1, \mathrm{c}, 8,6$, f, 4, e, 3, d, b, a, 2, 9, 7, 5
v_{0}	$2,5,3, \mathrm{~b}, 6,9, \mathrm{e}, \mathrm{a}, 0,4, \mathrm{f}, 1,8, \mathrm{~d}, \mathrm{c}, 7$
v_{1}	$7,6, \mathrm{c}, 9,0, \mathrm{f}, 8,1,4,5, \mathrm{~b}, \mathrm{e}, \mathrm{d}, 2,3, \mathrm{a}$
φ	$\mathrm{b}, 2, \mathrm{~b}, 8, \mathrm{c}, 4,1, \mathrm{c}, 6,3,5,8, \mathrm{e}, 3,6, \mathrm{~b}$
σ	$\mathrm{c}, \mathrm{d}, 0,4,8, \mathrm{~b}, \mathrm{a}, \mathrm{e}, 3,9,5,2, \mathrm{f}, 1,6,7$

The goal is to represent it as a set of Boolean functions in the basis of logical functions $A N D, O R, N O T, X O R$ with the minimal number of operations.

The total complexity of the set of functions is much less than the complexity of non-optimized functions.

Function	Number of operations
I	26
v_{0}	29
v_{1}	29
φ	33
σ	31

- We consider the possibility of bit-slicing the non-linear bijective mapping of GOST R 34-12.2015 «Kuznyechik» block cipher.
■ It should be noted that in 2016 "A Method of Constructing S-boxes With Minimal Number of Logical Elements" got a patent in Russian Federation. The method protected by this patent allows to realize non-linear mapping of Kuznyechick cipher with complexity of 681 Boolean operations.
■ Our results are presented below:

	$A N D$	OR	NOT	XOR	Total
I	8	5	4	9	26
v_{0}	9	5	6	9	29
v_{1}	4	3	3	7	17
φ	11	6	8	7	32
σ	11	6	7	9	33
α and ω				14	14
multiplication in $G F\left(2^{4}\right)$	16			15	31
branchng elimination	4	3	1	5	13
	79	28	29	90	Total: 226

Thank you for your attention!
Questions?

[^0]: ${ }^{1}$ pictures are from and more details in: Léo Perrin, Partitions in the S-Box of Streebog and Kuznyechik,

